

Radiology Report Summarization via Lightweight Domain Adaptation of Large Language Models

Dave Van Veen^{*}, Cara Van Uden^{*}, Maayane Attias, Anuj Pareek, Christian Bluethgen, Malgorzata Polacin, Wah Chiu, Jean-Benoit Delbrouck, Juan Manuel Zambrano Chaves, Curtis P. Langlotz, Akshay S. Chaudhari, John Pauly

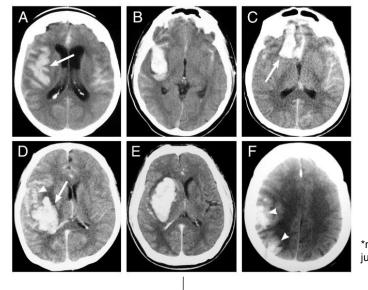
Outline

- Motivation
- Goals and Hypothesis
- Dataset
- Experiments
 - Models
 - Methods
- Results
 - Quantitative (overall, model size, out-of-distribution)
 - Qualitative (reader study, error analysis)
- Conclusions
- Next Steps

We investigate the task of **radiology report summarization (RRS)**.

Why?

- Radiology reports communicate crucial information from medical imaging studies.
- RRS could be a useful clinical task in practice.
 - Radiologists write summaries manually time-consuming, could lead to errors.
 - Downstream clinicians sometimes only look at the summary!
- Technically interesting!
 - Lots of information/jargon specific to the clinical domain.
 - Interpretability, coherence, and factual correctness are crucial.


How?

• Lightweight adaptation methods for large language models (LLMs).

Dataset: MIMIC-III

*not real paired image just for example of head CT

FINDINGS:

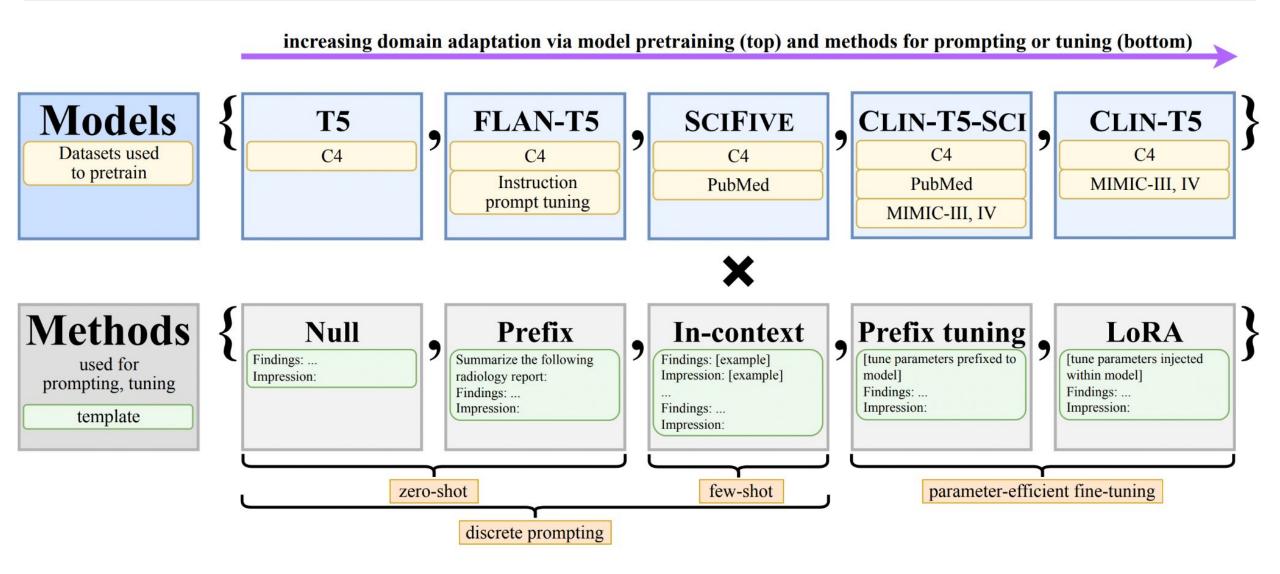
There is no evidence of acute intracranial hemorrhage, mass effect or shift of normally midline structures. There is no cerebral edema or loss of grey/white matter differentiation to suggest an acute ischemic event. The sulci and ventricles are prominent, most likely age-related involutionary changes. Confluent hypodensities in the deep white matter and periventricular distribution most likely represent small vessel ischemic disease. Air-fluid levels are seen in bilateral sphenoid sinuses. Scattered ethmoid air cells are opacified. Mastoid air cells appear well aerated. no acute fracture is seen. Right anterior scalp laceration is noted.

IMPRESSION:

1. No acute intracranial process.

2. Small vessel ischemic disease. Prominent sulci and ventricles, likely age-related involutionary changes.

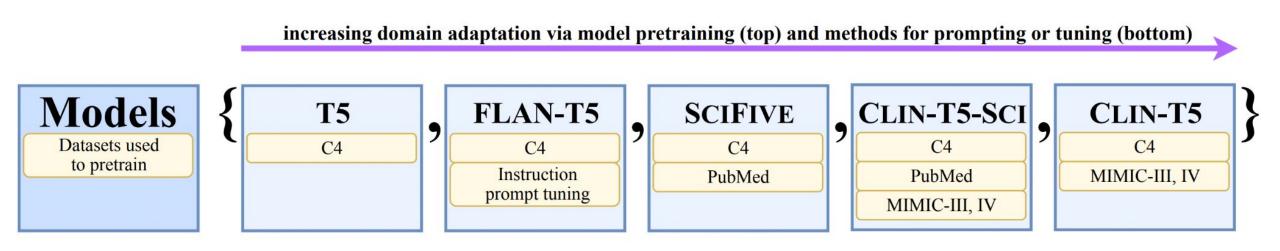
3. Sinus disease, as above.


Stanford | MEDICINE | Radiology Table 2: Number of reports in MIMIC-III by modality, anatomy, and dataset split.

Modality/	Number of reports						
Anatomy	Train	Val	Test				
CT head	25,122	3,140	3,141				
CT abdomen	12,792	1,599	1,599				
CT chest	10,229	1,278	1,280				
MR head	5,851	731	732				
CT spine	4,414	551	553				
CT neck	912	114	115				
MR spine	-	-	2,822				
CT sinus	-	-	1,268				
MR abdomen	-	-	1,062				
MR pelvis	_	-	254				
MR neck	-	-	231				

Johnson et al, 2016.

Experiments



Experiments: Pretraining Datasets and Models

Experiments: Pretraining Datasets and Models

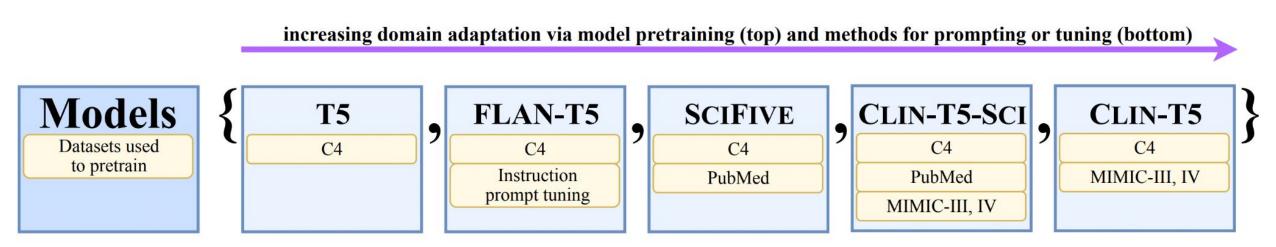
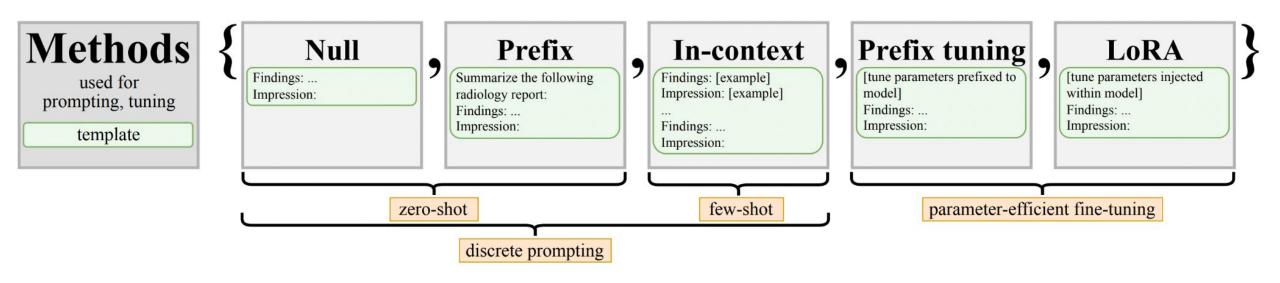
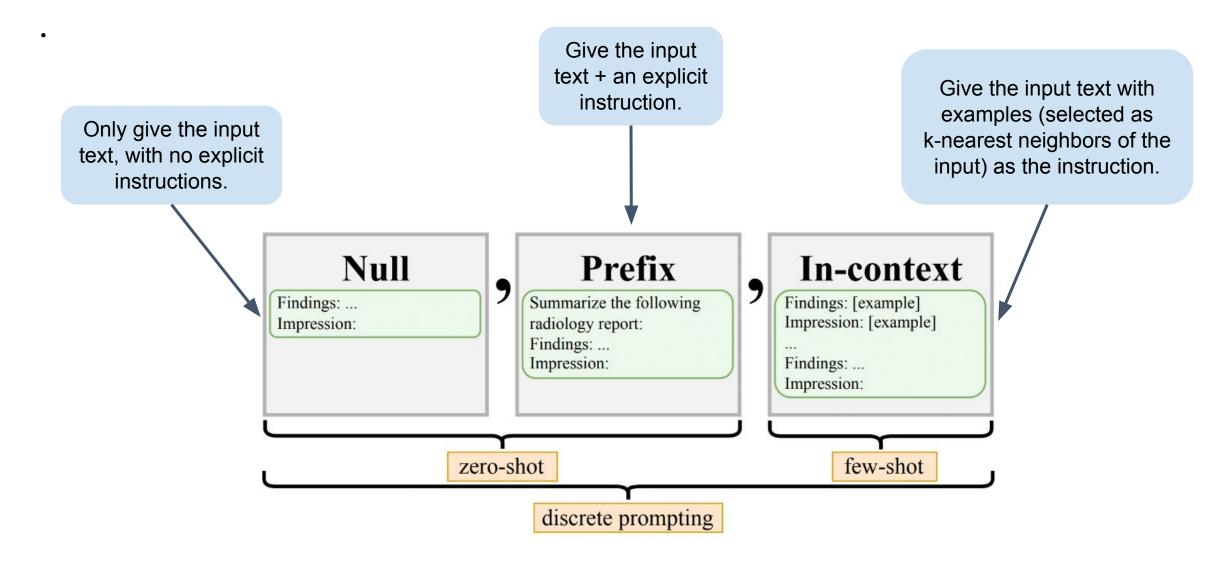


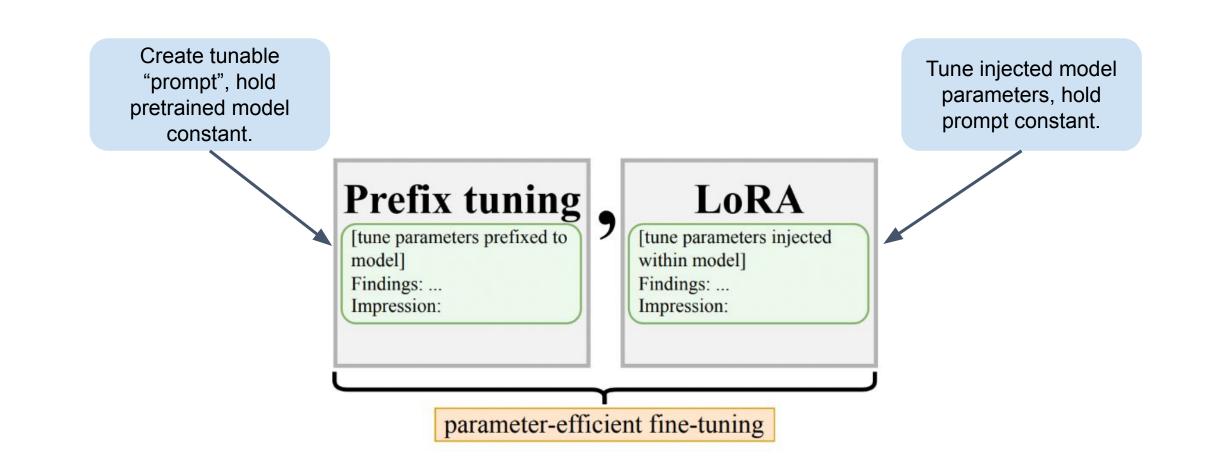
Table 1: We employ parameter-efficient fine-tuning methods for domain adaptation that modify <0.4% of model parameters while keeping other parameters frozen.


		Tunable	parameters	Training ti		
Model size	Method	#	% of total	per epoch	total	# epochs
$\mathbf{P}_{\alpha\alpha\alpha}$ (222M)	prefix tuning	0.37M	0.17%	0.98	9.83	10
Base (223M)	LoRA	0.88M	0.39%	1.32	6.60	5
Large (738M)	prefix tuning	0.98M	0.13%	2.93	29.3	10
	LoRA	2.4M	0.32%	3.85	19.3	5

Experiments: Domain Adaptation Methods



increasing domain adaptation via model pretraining (top) and methods for prompting or tuning (bottom)



We achieve best performance by **maximally adapting** to the **clinical RRS** task via both task-agnostic pretraining (on **clinical** text) and lightweight task adaptation (LoRA for **RRS**).

Results

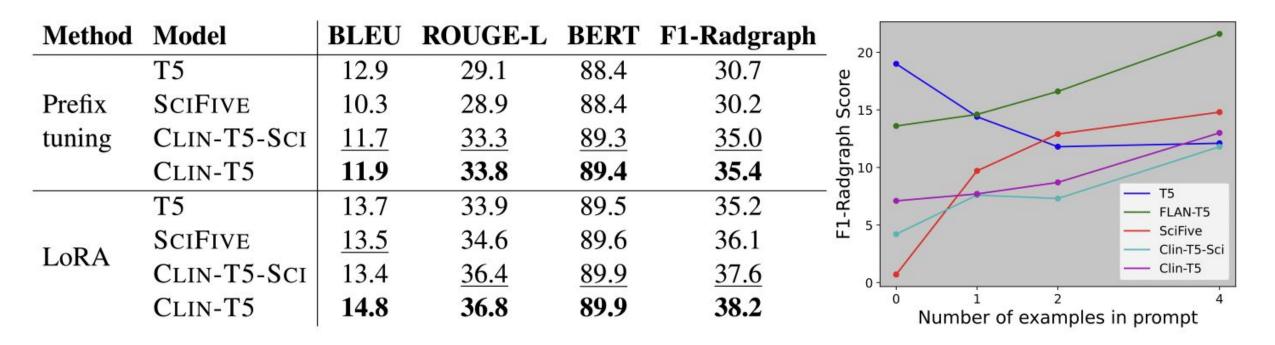


Figure 4: Domain adaptation. <u>Left</u>: Adaptation via pretraining on increasingly relevant data (T5, SCIFIVE, CLIN-T5-SCI, CLIN-T5) generally leads to improved performance for both fine-tuning methods. Note we exclude FLAN-T5, whose degree of domain adaptation is difficult to rank. See Table 5 in the appendix for comprehensive results. <u>Right</u>: Adaptation via increasing number of in-context examples leads to improved performance in most models.

Table 3: Best results overall. <u>Top</u>: Given that the base architecture (223M parameters) performs best via pretraining on clinical text (CLIN-T5) and subsequent fine-tuning, we improve performance on MIMIC-III by scaling to the large architecture (738M).

Dataset	Method	Size	BLEU	ROUGE-L	BERT	F1-Radgraph	F1-CheXbert
-	prefix tuning	base	11.9	33.8	89.4	35.4	-
		large	<u>14.6</u>	<u>36.7</u>	<u>89.9</u>	38.4	-
MIMIC-III		base	14.5	36.4	89.9	38.0	-
	LoRA	large	16.2	38.7	90.2	40.8	-

Table 4: Out-of-distribution (OOD) performance of CLIN-T5 prefix tuned on CT head. Compared to in-distribution (first row), performance suffers increasingly with OOD modalities (second row) and anatomies (third row). Additionally, when evaluating CT head, tuning on a larger dataset comprising all modalities/anatomies (bottom row) improves performance compared to tuning on CT head alone (top row).

Dataset		00	DD				
Train	Test	Modality	Anatomy	BLEU	ROUGE-L	BERT	F1-Radgraph
CT head	CT head			<u>11.4</u>	<u>35.0</u>	89.8	<u>35.1</u>
CT head	MR head	1		9.0	27.5	87.8	27.4
CT head	CT other		1	2.9	19.5	86.7	16.3
CT head	MR other	1	1	7.9	24.2	87.2	25.9
All	CT head	N/A	N/A	12.6	35.3	<u>89.7</u>	36.4

Table 6: Quantitative evaluation on Stanford Hospital's dataset of ultrasound radiology reports with the best adaptation method (LoRA) across each model using the base architecture size. This supports our hypothesis that pretraining with clinical text is beneficial for RRS datasets beyond the MIMIC suite.

Model	BLEU	ROUGE-L	BERT	F1-Radgraph
T5	12.6	31.2	88.2	26.2
FLAN-T5	12.0	30.6	88.3	26.8
SciFive	13.7	30.9	88.2	26.6
CLIN-T5-SCI	<u>14.0</u>	<u>32.7</u>	88.6	<u>28.5</u>
CLIN-T5	15.1	32.8	88.8	29.7

Results: Error Analysis

increasing domain adaptation

Findings:

there is an evolving total left mca distribution infarction, with extensive edema and mass effect. on today's study, there is at least 6 mm of midline shift and associated subfalcine herniation. there is near total effacement of the left lateral ventricle and perhaps minimal dilatation of the contralateral right lateral ventricle. no evidence of hemorrhagic transformation at this time. the left proximal mca and intrasylvian branches remain hyperdense. no evidence to suggest evolving contralateral infarction. there are air fluid levels in the sphenoid and maxillary sinuses, presumably related to prior intubation.

Impression (reference):

evolving total left mca distribution infarction, with significant mass effect, midline shift, and subfalcine herniation. no evidence of hemorrhagic transformation.

<u>KEY</u>

Blue:factually correctGreen:factually correct, novel compared to referenceOrange:incoherent but potentially relevantPink:hallucinated filler text (okay)

Red: hallucinated medical text (bad)

Impressions generated via...

Null prompt:

sulcal effacement, and extensive edema. there is a large left mca distribution infarction.: left mca territory..., there is an evolving left mca

Prefixed prompt:

. on , the following is a summary of the radiology report...:..: findings: there is an evolving left mca distribution infarction

In-context (1) prompt:

new infarction. the left MCA territory is noted. no new areas of hypoattenuation are identified. the right lateral ventricle is slightly more prominent. the left hemisphere.

Prefix tuning:

evolving left mca distribution infarction, with extensive edema and mass effect. no evidence of hemorrhagic transformation.

LoRA:

1. evolving left mca distribution infarction, with extensive edema and mass effect, with 6 mm of midline shift and subfalcine herniation. 2. no evidence of hemorrhagic transformation.

Figure 2: Example radiology report. <u>Left</u>: Findings and reference impression. <u>Right</u>: Generated impressions with various methods for discrete prompting (top) and parameter-efficient fine-tuning (bottom), all using the CLIN-T5-LARGE model. Color annotations were provided by a radiologist who specializes in the relevant anatomy (head).

Questions

Q1) Does the summary capture critical information?

- Q2) Is it factually correct?
- Q3) Is it coherent?

Stanford MEDICINE Radiology

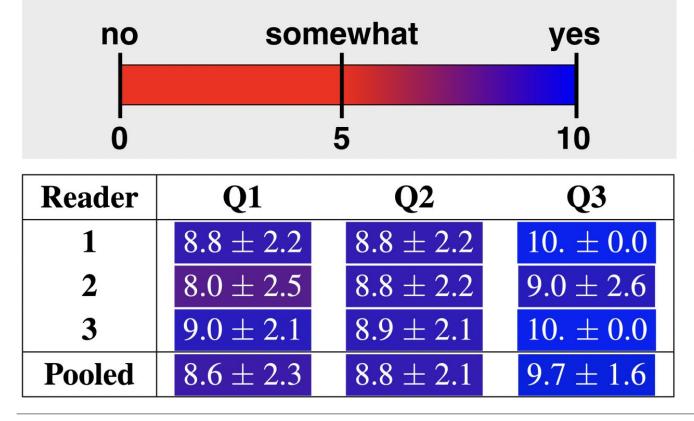


Figure 3: Radiology reader study. <u>Top</u>: Study design. <u>Bottom</u>: Results via CLIN-T5-LARGE + LoRA on random samples from the CT head dataset. The model scores highest in coherence (Q3) and generally performs well capturing critical information (Q1) in a factually correct way (Q2). Each entry's highlight color corresponds to its location on the above color spectrum.

"Reference" impression has information that isn't present in the "reference" findings.

The model has no chance of summarizing this information.

Generates repeated information when referring to prior studies.

This difference is typically an institutional or personal preference.

Generates an incorrect conclusion or reference, like nonexistent prior medical history.

This is a model "hallucination".

Employed recent lightweight strategies to adapt LLMs for RRS. Investigated how domain/task adaptation affects RRS task performance. Achieved best performance using a larger model maximally adapted to the clinical RRS task.

Evaluated best model quantitatively and qualitatively.

Thank you! Any questions?

Appendix

٠

							null	1.0	6.4	80.0	4.2
							prefix	0.3	4.2	78.0	0.7
N	Mala	DIDI	DOLICE	DEDT			in-context (1)	1.8	11.3	82.0	9.7
Model	Method	BLEU			F1-Radgraph	SciFive	in-context (2)	2.8	12.4	82.9	12.9
	null	3.4	14.3	84.1	13.8		in-context (4)	3.4	12.7	83.6	14.8
	prefix	4.7	19.0	86.1	19.0		prefix tuning	10.3	28.9	88.4	30.2
	in-context (1)	3.4	15.8	85.4	14.4		LoRA	13.5	34.6	89.6	36.1
Τ5	in-context (2)	3.3	15.8	85.4	11.8		null	1.5	7.0	78.7	6.1
	in-context (4)	4.4	16.2	85.5	12.1		prefix	1.1	5.0	77.9	4.2
	prefix tuning	12.9	29.1	88.4	30.7		in-context (1)	0.4	9.9	73.3	7.6
	LoRA	13.7	33.9	89.5	35.2		in-context (2)	0.9	11.1	76.1	7.3
	null	0.5	11.3	83.0	9.7		in-context (4)	2.4	14.2	76.7	11.8
	prefix	1.1	14.7	84.7	13.8		prefix tuning	11.7	33.3	89.3	35.0
	in-context (1)	2.9	17.8	85.6	14.6		LoRA	13.4	<u>36.4</u>	89.9	<u>37.6</u>
FLAN-T5	in-context (2)	5.3	19.6	86.2	16.6		null	0.8	12.2	69.4	10.7
	in-context (4)	8.6	25.0	87.0	21.6	CLIN-T5	prefix	1.0	9.5	78.6	7.1
	prefix tuning	12.1	27.1	87.8	28.0		in-context (1)	0.3	8.7	66.1	7.7
	LoRA	13.8	34.4	89.5	36.2		in-context (2)	0.6	9.6	66.6	8.7
	Ω ⊆ 1 Ω tr		inter care or		in an		in-context (4)	2.2	11.5	70.9	13.0
							prefix tuning	11.9	33.8	89.4	35.4

LoRA

14.8

36.8

89.9

38.2