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Abstract Results

Deep learning has shown great promise to encode high-frequency information for the Top: Evaluations of coord and conv, each trained at 2. Coord can also be queried at 4x
task of super-resolution in MRI. However, typical methods require upsampling at fixed, without re-training because it is scale-agnostic (F). Coord benefits from denoising
discrete scales due to their convolutional structure. This is undesirable for clinical (A # 0,Dvs. E), while convdoes nat.

interpretation and places limits on acquiring homogeneous training data [1].

Battom: In addition to being scale-agnostic, coord obtains similar performance (higher
We propose a scale-agnostic framework for MRI super-resolution, using a coordinate VIF and lower PSNR), the former of which is more indicative of super-resolution and
network as a decoder. The continuous nature of this decoder enables: diagnostic quality [2].

e (Querying at arbitrary resolutions
e [ecoupling between training and querying scales

We compare this (coord) to a similar framework with a convolutional decoder (conv)
and evaluate performance in the context of various denoising strategies.
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Our training pipeline (battom) maps a low-resolution input to a latent representation, adiologists scored images using a worse worse _different  better  better
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Key

€ : query coordinate with neighbors [017 C2, C3, 64]
D, I : denoiser with strength 0, predicted image
L.,L;:loss terms for consistency, denoising
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