

Abstract

Coordinate-based networks have emerged as a powerful tool for 3D representation and scene reconstruction. However,

- Current architectures are black boxes:
 - Spectral characteristics are difficult to analyze. ullet
 - Unsupervised behavior is difficult to predict. ullet
- Naive down/up-sampling often results in artifacts.

We introduce band-limited coordinate networks (BACON an architecture with an analytical Fourier spectrum. Features:

- Predictable behavior at unsupervised points
- Design according to the spectral characteristics of the represented signal
- Multi-scale representation without explicit supervisio

Network Properties

Adaptive-frequency multiscale SDF evaluation for 80x fas mesh extraction (**top**). Periodic extrapolation (**bottom**).

Contact: {lindell, vanveen, jjpark3d}@stanford.edu

BACON: Band-limited Coordinate Networks for Multiscale Scene Representation

David B. Lindell, Dave Van Veen, Jeong Joon Park, Gordon Wetzstein

Let $g_i(\mathbf{x}) = \sin(\boldsymbol{\omega}_i \mathbf{x} + \boldsymbol{\phi}_i)$ Then extract the i th layer via: $\mathbf{z}_0 = g_0(\mathbf{x})$ $\mathbf{z}_i = g_i(\mathbf{x}) \circ (\mathbf{W}_i \mathbf{z}_{i-1} + \mathbf{b}_i), 0 \le i < N_L$ $\mathbf{y}_i = \mathbf{W}_i^{\text{out}} \mathbf{z}_i + \mathbf{b}_i^{\text{out}},$ a formulation which bypasses the compositional structure of standard coordinate networks, e.g.[1].	
Hence the entire network can be expr sines. The distribution of frequencies theoretical) shows increasing bandwi	ressed as a sum (right : empirica dth in later laye
Results	
Contrasted with other methods, BACON permits down/up-sampling without aliasing or artifacts (top righ as well as smooth, band-limited shap [2] decomposition (bottom) requiring fewer parameters than other multiscale methods, e.g. NGLOD [3].	e of the solution of the solut
Image: wide wide wide wide wide wide wide wide	
	Let $g_i(\mathbf{x}) = \sin(\omega_i \mathbf{x} + \phi_i)$ Then extract the i th layer via: $\mathbf{z}_0 = g_0(\mathbf{x})$ $\mathbf{z}_i = g_i(\mathbf{x}) \circ (\mathbf{W}_i \mathbf{z}_{i-1} + \mathbf{b}_i), 0 \le i < N_L$ $\mathbf{y}_i = \mathbf{W}_i^{\text{out}} \mathbf{z}_i + \mathbf{b}_i^{\text{out}},$ a formulation which bypasses the compositional structure of standard coordinate networks, e.g.[1]. Hence the entire network can be expresent sines. The distribution of frequencies theoretical) shows increasing bandwither Results Contrasted with other methods, BACON permits down/up-sampling without aliasing or artifacts (top right as well as smooth, band-limited shap [2] decomposition (bottom) requiring fewer parameters than other multiscale methods, e.g. NGLOD [3].

	FF	SIREN	Nglod-4	Nglod-5	
# Params.	527K	528K	1.35M	10.1M	
Chamfer↓	2.166e-6	2.780e-6	8.358e-6	2.422e-6	
$IOU\uparrow$	9.841e-1	9.751e-1	9.479e-1	9.811e-1	

Ground Truth

Nglod-1

References: [1] Sitzmann et. al., Implicit Neural Representations with Periodic Activation Functions, Proc. NeurIPS, 2020. [2] Stanford 3D Scanning Repository [3] Takikawa et al., Neural Geometric Level of Detail, Proc. CVPR, 2021.

Supplemental Intuition

Contact: {lindell, vanveen, jjpark3d}@stanford.edu

BACON: Band-limited Coordinate Networks for Multiscale Scene Representation David B. Lindell, Dave Van Veen, Jeong Joon Park, Gordon Wetzstein

Supplemental Results: 3D shapes and neural rendering

	PSNR ↑			# Params.					
	$1 \times$	1/2	1/4	1/8	Avg.	$ 1 \times$	1/2	1/4	1/8
NeRF	26.734	28.941	29.297	26.464	27.859	511K			
Mip-NeRF	29.874	31.307	32.093	32.832	31.526	511K			
BACON	27.430	28.066	28.520	28.475	28.123	531K	398K	266K	133K

30

30

