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INTRODUCTION:  

Three-dimensional MRI-based statistical shape models (SSM) can predict radiographic knee 

osteoarthritis progression1 and distinguish anterior cruciate ligament injury cases and controls2. 

However, current SSMs require dense corresponding points (matching points continuously over all 

bones), and may introduce bias based on the reference shape. SSMs learn linearly orthogonal features 

using principal components analysis, potentially limiting features. 

 

Neural implicit representations are a state-of-the-art method for 3D modeling that learn a continuous 

signed distance function (SDF) corresponding to a shape’s surface (Figure 1). Generative neural 

implicit representations (neural shape model) extend this methodology to learn the SDF of a large 

distribution of shapes allowing a single model to encode the variety of shapes found in the training 

dataset (distribution). While these models have been shown to reconstruct bones from undersampled 

data3, it is unclear whether they encode clinically important information, and how they compare to 

SSMs. 

 

The purpose of this work was to determine whether a neural shape model of the femur can predict knee 

pain, and to compare its predictive ability to conventional SSMs. 

 

METHODS:  

Data from the 24 and 48-month visit of the right knee of 562 participants enrolled in the Osteoarthritis 

Initiative were included4. Participants were randomly split evenly into training and testing sets. Sagittal 

Dual Echo in the Steady State knee MRIs (TE/TR= 5/16ms, flip angle=25o, field-of-

view=140×140mm2, in-plane resolution=0.36×0.36mm2, slice thickness=0.7mm) of the right knee of 

each participant were segmented using a validated convolutional neural network5.  

 

The 24-month visit of the training data was used to learn a neural shape model of the femur using the 

autodecoder framework6.  

 

A multilayer perceptron (MLP) takes as input the xyz position of an arbitrary point and a shape specific 

latent vector and predicts the SDF of that point and shape. The framework jointly optimizes the weights 

of the MLP and the latent representation (length 256) using Equation 1: 
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where K are the 281 training bones, Xk is a set of randomly sampled points for bone k, f is the MLP and 

θ are the weights optimized to predict SDF values (si) from point (xi) and latent (zk) inputs. ℒ is the L1 

loss and the second term is the mean squared error (MSE) used to learn an independent covariance 

structure. 



 

To obtain latent representations for training and testing pain prediction models, the learned neural 

shape model was fit to the 48-month training and testing data using Equation 2: 
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where the MLP parameters (θ) are unchanged, and the latent vector is optimized to predict the SDF 

values of the bone’s vertices. 

 

To test the model’s ability to learn clinically meaningful information, its ability to predict current self-

reported pain was tested. The pain group had > 6-months of pain in the past 12-months and the no-pain 

group had no pain in the past 12-months7. After extracting pain outcomes, there were 111 participants 

in the pain training dataset and 92 in the pain testing dataset. We trained 4 machine learning classifiers 

(logistic regression, gradient boosting, random forests, and naïve bayes) to predict pain using the 

learned 256-dimensional latent representation as input. To compare to prior work, we also used the 90-

features of a previously described femur SSM trained with and without cartilage thickness8. To 

determine the effect of training dataset size, we fit each model using 100%, 75%, 50%, and 25% of the 

training data. Confidence intervals on predictive ability were generated by bootstrapping each model 

and dataset size 100 times without replacement. Model performance was assessed by calculating area 

under the receiver operating characteristic curve (AUROC), sensitivity, and specificity on the testing 

data. 

 
Table 1. Participant demographics for the training (n=281) and testing (n=281) samples. For training the pain 

models, there were 111 participants in the pain training dataset and 92 in the pain testing dataset. Kellgren 

Lawrence grade and sex include counts for each category. All other demographics are presented as mean 

(standard deviation).  

 Training Sample Testing Sample 

Kellgren Lawrence (KL) grade KL 0, n = 16; KL 1, n = 44; KL 

2, n = 128; KL 3, n = 86; KL 4, 

n = 7 

KL 0, n = 19; KL 1, n = 35; KL 

2, n = 141; KL 3, n = 81; KL 4, 

n = 5 

Sex Female n=160; Male n=121 Female n=175; Male=106 

Age (y) 63.3 (8.6) 63.7 (9.1) 

Height (m) 1.68 (0.09) 1.67 (0.09) 

Weight (kg) 87.4 (15.5) 86.5 (15.6) 

Body Mass Index (kg/m2) 30.8 (4.7) 30.9 (4.9) 

Knee Osteoarthritis Outcome 

Score – Pain 

83.2 (17.6) 82.4 (18.6) 

Western Ontario and McMaster 

University Osteoarthritis Index 

– Pain 

2.8 (3.3) 2.9 (3.5)  

 

RESULTS:  

Demographics for participants divided by split are outlined in Table 1. Examples of the learned 

representation are included in Figure 1. For each dataset size, neural shape models performed best with 

AUROC of 0.62, 0.66, 0.68, and 0.70 for the 25, 50, 75, and 100% dataset sizes, respectively (Figure 2, 

Table 2). The best fitting model used 100% of the labelled data, logistic regression and had an AUROC 

of 0.70 and sensitivity of 0.89. 



 

 
Figure 1. For training, each 

mesh was scaled to a unit 

sphere by mean centering and 

scaling by the max radial 

distance, then 500,000 points 

and their SDF values were 

sampled. (A) Shows a mesh 

and half its points colored by 

their signed distance. The 

network predicts signed 

distances. Meshes can be 

reconstructed from SDF = 0 

points. The loss optimized 

learned latent vectors and 

promoted independent features 

by learning a diagonal 

covariance matrix (B). (C) The 

learned mean shape (0-vector) 

is representative of the dataset. 

(D) The learned latent space 

enables smooth interpolation. 

 

 
 

Figure 2. Neural shape model predictions of pain. Left: Testing data violin and boxplots of the distributions of 

AUROCs for the 100 repeatedly trained prediction models. In the n=111 (100% data) case, the data used to fit 

the models did not change between the 100 iterations, as a result the fitted naïve bayes and logistic regression 

predictions are singular flat lines on the graph. Right: The receiver operating characteristic curve for predictions 

using 100% (n=111) of the training data random forest and gradient boosting models with AUROC equal to the 

mean performance were selected.  

 

 

 



Table 2. Mean AUROC/Sensitivity/Specificity for each model type and training dataset size. The best model for 

each datatype, assessed using AUROC is bolded; in the case of a tie, all models are bolded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION:  

Generative neural shape models of bone learned latent spaces that predict knee pain better than a 

traditional bone SSM as well as a bone + cartilage SSM. This model required only one step, 

simultaneously generating correspondence, and encoding clinically relevant features. As expected, 

increasing training data improved pain predictions. According to AUROC, the neural shape model had 

comparable performance to the best performing SSMs using 25-50% less training data. The addition of 

cartilage to the bone only SSM worsened its predictions; this is in-line with a deep learning study 

where a bone+cartilage model reduced AUROC values by 3% compared to a bone-only model7. It is 

unclear why cartilage worsens predictions. Nonetheless, the neural shape model achieves comparable 

predictions to these deep learning models, using 1-2 orders of magnitude less data. Visualization of the 

pain predictions enabled by the neural shape model (Figure 3) shows that osteophyte formation is 

correlated with pain. 

Figure 3. Visualization of the trajectory of increasing pain learned using logistic regression and the neural shape 

model. From left to right, shape is interpolated along a vector defined by the logistic regression coefficients. The 

left most bone represents no pain, with increasing probability of being painful as morphing to the right. Notable 

features learned from the model are broadening of the lateral trochlea and medial femoral condyle, generation of 

trochlear osteophytes (blue arrows), and narrowing of the intercondylar notch (green arrow). 

Shape Model Type Classification 

Model Type 

N = 111 

(100%) 

N = 83 

(75%) 

N = 55 

(50%) 

N = 27 

(25%) 

Neural Shape 

Representation 

Naïve Bayes 0.70 / 0.89 / 0.40 0.68 / 0.85 / 0.39 0.66 / 0.82 / 0.36 0.59 / 0.75 / 0.34 

Gradient Boosting 0.57 / 0.70 / 0.42 0.55 / 0.68 / 0.40 0.55 / 0.65 / 0.42 0.52 / 0.61 / 0.41 

Random Forest 0.55 / 0.70 / 0.38 0.57 / 0.68 / 0.40 0.55 / 0.64 / 0.43 0.54 / 0.64 / 0.42 

Logistic 

Regression 

0.69 / 0.80 / 0.47 0.67 / 0.79 / 0.40 0.66 / 0.80 / 0.34 0.62 / 0.74 / 0.32 

 

Bone Only Statistical 

Shape Model 

Naïve Bayes 0.62 / 0.60 / 0.62 0.60 / 0.62 / 0.56 0.58 / 0.65 / 0.49 0.56 / 0.68 / 0.39 

Gradient Boosting 0.69 / 0.82 / 0.44 0.64 / 0.75 / 0.45 0.61 / 0.70 / 0.45 0.56 / 0.65 / 0.42 

Random Forest 0.68 / 0.77 / 0.47 0.65 / 0.75 / 0.45 0.61 / 0.72 / 0.43 0.57 / 0.64 / 0.45 

Logistic 

Regression 

0.65 / 0.71 / 0.47 0.63 / 0.67 / 0.51 0.62 / 0.66 / 0.51 0.59 / 0.61 / 0.52 

 

Cartilage + Bone 

Statistical Shape 

Model 

Naïve Bayes 0.59 / 0.56 / 0.53 0.59 / 0.60 / 0.53 0.58 / 0.63 / 0.51 0.55 / 0.69 / 0.39 

Gradient Boosting 0.58 / 0.71 / 0.47 0.59 / 0.68 / 0.47 0.59 / 0.66 / 0.48 0.56 / 0.62 / 0.47 

Random Forest 0.64 / 0.75 / 0.49 0.62 / 0.74 / 0.47 0.59 / 0.66 / 0.48 0.55 / 0.59 / 0.49 

Logistic 

Regression 

0.64 / 0.76 / 0.55 0.63 / 0.65 / 0.55 0.60 / 0.63 / 0.53 0.59 / 0.60 / 0.51 



 

CONCLUSION:  

Neural shape models learn clinically meaningful bone information. These shape models outperform 

traditional SSMs for predicting pain, a challenging and clinically important task. 
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